Modulation of ionizing radiation-induced apoptosis by bantam microRNA in Drosophila.
نویسندگان
چکیده
In Drosophila, heterozygosity in the pro-apoptotic gene hid significantly reduces apoptosis that is induced by ionizing radiation (IR). Therefore, mechanisms that regulate Hid levels can potentially contribute to life-or-death decision of an irradiated cell. 3'UTR of hid mRNA contains 5 potential binding sites for bantam microRNA. Ectopic expression of ban attenuated apoptosis that results from ectopic expression of hid but the significance of this regulation under physiological conditions remained to be investigated. We report here that ban is needed to limit IR-induced apoptosis in larval imaginal discs. Using tubulin-EGFP ban sensors with ban consensus sequences in the 3'UTR, we find that EGFP decreases following IR, indicating that IR activates ban. Likewise, a tubulin-EGFP reporter with hid-3'UTR is repressed in irradiated discs and this repression requires ban consensus sites in the hid 3'UTR. ban mutant larvae show increased sensitivity to killing by IR, which is suppressed by a mutation in hid. These results can fit into a model in which IR activates ban and ban represses hid to limit IR-induced apoptosis. miRNAs have been shown previously to be induced by radiation but this is the first report that a miRNA is functionally important for radiation responses.
منابع مشابه
The Hippo Pathway Regulates the bantam microRNA to Control Cell Proliferation and Apoptosis in Drosophila
The Hippo signaling pathway acts upon the Yorkie transcriptional activator to control tissue growth in Drosophila. Activated Yorkie drives growth by stimulating cell proliferation and inhibiting apoptosis, but how it achieves this is not understood. Yorkie is known to activate Cyclin E (CycE) and the apoptosis inhibitor DIAP1. However, overexpression of these targets is not sufficient to cause ...
متن کاملDying Cells Protect Survivors from Radiation-Induced Cell Death in Drosophila
We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR)-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we...
متن کاملbantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila
Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide microRNA that promotes tissue growth. ...
متن کاملHDAC inhibitor misprocesses bantam oncomiRNA, but stimulates hid induced apoptotic pathway
Apoptosis or programmed cell death is critical for embryogenesis and tissue homeostasis. Uncontrolled apoptosis leads to different human disorders including immunodeficiency, autoimmune disorder and cancer. Several small molecules that control apoptosis have been identified. Here, we have shown the functional role of triazole derivative (DCPTN-PT) that acts as a potent HDAC inhibitor and mis-ex...
متن کاملThe bantam MicroRNA Is a Target of the Hippo Tumor-Suppressor Pathway
BACKGROUND The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Hippo signaling restricts tissue size by promoting apoptosis and cell-cycle arrest, and animals carrying clones of cells mutant for hippo develop severely overgrown adult structures. The Hippo pathway is thought to exert its effects by modulating gene expression through ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Developmental biology
دوره 320 1 شماره
صفحات -
تاریخ انتشار 2008